logo
当前位置:池能电子 -- 新闻中心 -- 行业新闻 -- 浏览文章

基于锂电池的矿用在线式不间断电源技术研究

时间:2015-8-28 19:51:36来源:本站原创浏览次数:
    摘要:该不间断电源系统采用主控箱和电池箱分离的方式,实现分机的级联,可以通过更改电池箱数目来满足不同应用场合的使用需求。研制组通过对不间断电源的关键、重要技术、市场等方面进行了深入的技术论证与研究攻关工作,样机已经过有效的验证。本文对具体的研究过程及关键技术进行了总结,为相关电池、电源产品的设计提供了参考。
  关键词: BMS,SOC,均衡,CAN,级联
  1引言
  传统矿用锂电池箱和锂电池监控系统集成在一个隔爆箱中,额定功率和电池容量已经固定,对于避难硐室和机车电源等系统,要求电池电源具有大容量和大功率输出能力,实现将主控箱和电池箱分离,通过更改电池箱数目来满足不同场合的使用。
  2系统功能和性能
  该系统的基本功能为保证对用户供电的不间断,当外部输入660V、127V交流电时,UPS主板将输入交流电整流为直流给逆变器供电,然后经逆变、滤波输出AC127V,同时输出 DC24V及18V本安,当外部供电断电时,通过外部的锂电池箱向主控制箱供电,从而保证电源的不间断。
  为了让锂离子电池一直工作于正常状态,系统需要对电池组定时进行自动充、放电循环,保持电池组活性。用户可以根据负载大小及后备供电时间的需求,选择矿用防爆型锂离子蓄电池电源的级联数量。
 
  3总体设计
  依据实际需求,研制组将主控箱与电池箱分离,系统连接如图1所示。
  如图1所示,电池箱并联接进主控箱,主控箱通过CAN与电池箱进行通信来管理电池箱。整套系统基本功能即为保证对用户供电的不间断,当外部输入660V、127V交流电时,UPS主板将输入交流电整流为直流给逆变器供电,然后经逆变、滤波输出AC127V,同时输出 DC24V,当外部供电断电时,通过电池箱内锂离子蓄电池电源向控制箱供电,从而保证AC127V、 DC24V电压输出的不间断。
  4主控箱设计
  4.1 主控箱原理
  主控箱组成原理框图如图2所示。
  工作原理如下:输入变压器将外部交流供电(AC660V、127V之一)变换为AC127V,AC127V一路输入UPS主板,然后经整流、滤波、逆变输出交流127V; 127V另一路接到充电器的输入端,充电器的启动由主控板控制。主控板通过CAN总线选择一台级联的锂离子蓄电池电源(图2下部虚线框图)充电;AC127V还有一路接入到AC/DC模块,输出24VDC,用于主控板、18V本安电源及24VDC的输出。
  ARM显示控制板通过CAN总线选择相应的锂离子蓄电池电源箱,其电池组输出端经强电盒开关接入到24VDC/DC模块和UPS电源主板,DC/DC模块将电池组输出电压转换为24VDC,与AC/DC模块输出的24VDC在显控板上通过二极管并接,用于电源交流输入异常时的24VDC供电。
  UPS主板将电池组的输出电压升压作为逆变器的备用电源,在外部供电断电时将电池组电压逆变为交流127V输出,从而保证输出不间断供电。
  当电池组电压跌落到放电截止电压时,主控板通过CAN总线断开放电开关,选择另一台锂离子蓄电池电源箱继续给主控箱供电。直到所有级联的锂离子蓄电池电源箱放电完毕,整个UPS电源停止工作。当外部交流供电恢复,UPS主板又切换回由输入交流供电。
  在UPS电源正常运行时,主控板通过CAN总线选择一台锂离子蓄电池电源箱进行自放电。通过网络接口将系统信息传送到地面控制室,并实现远程放电控制。
  4.2 ARM显示控制板
  ARM显示控制板通过CAN口与电池内的BMS电池管理系统板进行通信,并将UPS主板、各电池模块的信息通过电控箱上的LCD液晶屏显示。同时ARM显示控制板通过以太网口与上位计算机进行通信,实现远程通信与控制。CPU采用意法半导体的公司的STM32F103RE处理器,属于ARM Cortex-M3架构。
  5电池箱设计
  5.1 电池箱原理
  电池箱组成原理框图如图3所示。
  工作原理如下:BMS12电池管理系统板主要用于实时监控、管理锂离子电池,并通过CAN与主控箱进行通讯,向电控箱发送电池状态信息,同时接收电控箱指令,控制充放电开关对电池组进行充放电控制。电池箱内部安装有放电电阻,UPS电源正常运行时,ARM显控板通过CAN总线选择一台锂离子蓄电池电源箱进行自放电以维护锂离子蓄电池的活性。
  5.2 BMS12电池管理系统板
  BMS12电池管理系统板同样采用STM32处理器作为主控,采用24V直流供电,电池管理系统板通过PTC热敏电阻对每节单体电池的温度进行测量;采用LTC6803电池监视芯片对单体电池电压进行检测并进行均衡处理;通过霍尔传感器获取充放电电流,并对充、放电进行开关控制;具有异常保护、报警等功能,通过RS232串口与主控箱内的ARM显控板通信。
  6关键技术分析
  a)锂离子电池组管理(BMS)技术研究
  针对矿用锂电池不间断电源研制需求,研究矿用锂电池组高精度SOC预测与均衡策略的电池管理技术、高精度和高抗干扰数据采集技术,开发出基于锂电池的高性能电池管理系统,并整个系统采用模块化设计思想,方便以后升级和扩展。自主编制BMS上位机软件界面,通过串行接口监测与设置板卡运行参数。
  a)基于总线方式的电池热连接扩容技术
  采用了基于总线的主控箱与电池箱分离的系统设计,用户可以根据需求灵活增减电池容量,一台主控箱可以连接多达32台电池箱。本产品除完成单体电源的全部功能外,还需对多台电池箱的进行监测、协调其投切及充放电等控制,主控箱内的ARM显示板对电池箱内的BMS电池管理系统具有热连接的管理能力,电源系统能够像USB设备一样将外部电池箱随时接入或脱离系统。该系统能够实现市电、电池工作模式之间的零延时切换、实现电池箱之间的无缝投切。
  b)磷酸铁锂离子电池的在线SOC估算
  磷酸铁锂离子电池的性能出众,但其化学特性让SOC电池容量估算变得较为复杂。项目组对单体磷酸铁锂离子电池建立了等效电路模型,根据等效电路模型列出了系统的状态空间方程。通过调试确定电池等效电路模型的参数,包括SOC曲线函数的获取,相应电阻、电容值的确定。在确定电阻值时,考虑到电流的影响,拟制出电流的函数,提高了模型的精度,根据安时法由系统状态空间方程得出SOC估算公式。在实际环境中结合电池充放电,进行在线式SOC估算,达到较高的估算准确性。
  c)基于LTC6803芯片的被动均衡技术
  传统的均衡使用了继电器放电的方式,电池数量多时检测复杂,可靠性低。项目组经过分析论证选择采用了LTC6803电池管理芯片,结合MOSFET场效应管与功率电阻,实现放电回路,由处理器控制MOSFET导通对单体电池进行放电均衡。
  7结束语
  本研究研在技术上有很大自主创新,内部关键部件ARM主控板、BMS电池管理系统硬件及其嵌入式软件均为自研,完成BMS上位机软件、上位机远程通信软件,拥有完整的自主知识产权。该电源应用于矿业生产中,配置灵活,可以保证矿下设备工作的不间断,为安全方面提供有效保障,具备很好的社会与经济效益。
  参考文献
  [1]任哲.嵌入式实时操作系统Uc/OS-II原理及应用[M]. 北京:北京航空航天大学出版社,2009.
  [2]范数瑞,李琦,赵燕飞.Cortex-M3嵌入式处理器原理与应用[M].北京:电子工业出版社,2011.
  [3.]牛跃听,周立功,方丹.CAN总线嵌入式开发——从入门到实践[M]. 北京:北京航空航天大学出版社,2012.
  作者简介:华尧(1982-),男,本科,工程师,研究方向为电子技术。
相关文章
相关产品
收缩
  • 电话咨询

  • 0769-28823203